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Abstract 
Context 
Whole-gland ablation is a feasible and effective minimally invasive treatment for localized 
prostate cancer (PCa). Previous systematic reviews supported evidence for favorable 
functional outcomes, but oncological outcomes were inconclusive owing to limited follow-
up. 
Objective 
To evaluate the real-world data on the mid- to long-term oncological and functional 
outcomes of whole-gland cryoablation and high-intensity focused ultrasound (HIFU) in 
patients with clinically localized PCa, and to provide expert recommendations and 
commentary on these findings. 
Evidence acquisition 
We performed a systematic review of PubMed, Embase, and Cochrane Library publications 
through February 2022 according to the Preferred Reporting Items for Systematic Reviews 
and Meta-analyses (PRISMA) statement. As endpoints, baseline clinical characteristics, and 
oncological and functional outcomes were assessed. To estimate the pooled prevalence of 
oncological, functional, and toxicity outcomes, and to quantify and explain the 
heterogeneity, random-effect meta-analyses and meta-regression analyses were 
performed. 
Evidence synthesis 
Twenty-nine studies were identified, including 14 on cryoablation and 15 on HIFU with a 
median follow-up of 72 mo. Most of the studies were retrospective (n = 23), with IDEAL 
(idea, development, exploration, assessment, and long-term study) stage 2b (n = 20) being 
most common. Biochemical recurrence–free survival, cancer-specific survival, overall 
survival, recurrence-free survival, and metastasis-free survival rates at 10 yr were 58%, 96%, 
63%, 71–79%, and 84%, respectively. Erectile function was preserved in 37% of cases, and 
overall pad-free continence was achieved in 96% of cases, with a 1-yr rate of 97.4–98.8%. 
The rates of stricture, urinary retention, urinary tract infection, rectourethral fistula, and 
sepsis were observed to be 11%, 9.5%, 8%, 0.7%, and 0.8%, respectively. 
Conclusions 
The mid- to long-term real-world data, and the safety profiles of cryoablation and HIFU are 
sound to support and be offered as primary treatment for appropriate patients with 
localized PCa. When compared with other existing treatment modalities for PCa, these 
ablative therapies provide nearly equivalent intermediate- to long-term oncological and 
toxicity outcomes, as well as excellent pad-free continence rates in the primary setting. This 
real-world clinical evidence provides long-term oncological and functional outcomes that 
enhance shared decision-making when balancing risks and expected outcomes that reflect 
patient preferences and values. 
Patient summary 
Cryoablation and high-intensity focused ultrasound are minimally invasive treatments 
available to selectively treat localized prostate cancer, considering their nearly comparable 
intermediate- to long term cancer control and preservation of urinary continence to other 
radical treatments in the primary setting. However, a well-informed decision should be 
made based on one's values and preferences. 
  



Introduction 
Prostate cancer (PCa) remains the most frequent solid organ malignancy, and is the second 
and fifth leading cause of cancer-related death in men in the USA and worldwide, 
respectively [1], [2]. Owing to its prolonged natural history, there are opportunities for 
periodic, staged intervention to cure/control the disease, as evidenced by the use of active 
surveillance (AS) as a management option [3]. Historically, PCa treatment has been centered 
around radical prostatectomy (RP) or radiation therapy (RT). While effective, not all patient 
preferences and associated comorbidities, as well as contraindications to any single therapy, 
will allow them to be optimal candidates for RP or RT, necessitating the need for an 
alternative option, for example, ablation [4], [5], [6]. 
 
Contrary to radical therapy, AS has been embraced because it fundamentally avoids 
treatment-related sequelae. It is now the cornerstone of management for low-grade 
disease, and AS criteria have expanded [7], [8]. Further, efforts to preserve functional 
outcomes, optimize oncological results, and maintain overall positive quality of life/well-
being have spurred the development of alternative therapies such as ablation [9]. Initially 
developed for poor surgical candidates, technological advancements in energy delivery and 
real-time image monitoring have reduced morbidity and expanded the use of ablation in 
PCa management. 
 
Although prostate cryoablation (CRYO) emerged in the 1960s, it took three decades to 
improve the technology to deliver safer freezing/thawing processes and advance clinical 
adoption [10]. The 1990s witnessed the introduction of high-intensity focused ultrasound 
(HIFU); together with CRYO, these are the most prevalent and well-tested PCa ablative 
techniques. CRYO involves ice ball formation and freezing/thawing of intended tissues, 
inducing coagulative necrosis and cell death via mechanical and biochemical means [11]. 
Conversely, HIFU exacts coagulative necrosis through mechanical disruption and heating 
with ultrasound energy [11]. Covering either end of the temperature spectrum, the energy 
delivery for both approaches can be controlled precisely to conform delivery to specific 
gland areas/patterns depending upon clinical need. This allows for both whole-gland (WG) 
and partial-gland treatments. 
 
According to current guideline recommendations, patients with clinically significant, organ-
confined intermediate-risk PCa may be ablation candidates if they receive standard 
counseling addressing the side effects, recurrence risk, necessity for follow-up, and possibly 
additional therapy [12]. However, there is a paucity of long-term outcomes, comparative 
studies, and randomized controlled trials (RCTs) governing its use. Herein, we provide 
intermediate- to long-term real-world evidence via a comprehensive systematic review of 
WG CRYO and HIFU for localized PCa, and provide best practice recommendations for 
clinical utilization. 
 
  



2. Evidence acquisition 
The population, intervention, control, outcome, study design (PICOS) approach was used to 
provide a framework for the initial literature search (Supplementary Table 1) [13]. We 
conducted a full systematic review and meta-analysis using the Cochrane Handbook for 
Systematic Reviews of Interventions following the Preferred Reporting Item for Systematic 
Reviews and Meta-analyses (PRISMA) 2020 statement [14], [15]. The study was registered in 
the PROSPERO database (CRD42022384922). 
 
2.1. Search strategy 
The search was developed “a priori” and conducted by two professional medical librarians 
in consultation with the author team. It included keywords and subject headings 
exhaustively representing PCa and ablation, with the full search terms and criteria contained 
in Supplementary Table 2. Databases searched included MEDLINE (PubMed), Embase 
(Elsevier), Cochrane Library online, and Scopus (Elsevier). 
Search hedges or database filters were used to remove publication types such as editorials, 
letters, case reports, comments, and animal-only studies, as appropriate. To maximize the 
yield of eligible articles not limited to a certain timeframe, we considered all articles 
published from inception through February 9, 2022. We searched for additional articles by 
reviewing the references of the selected articles and looking at the articles listed by the 
citation tracking feature of Web of Science and Scopus. The full text of the final selected 
articles was read for further screening. 
 
2.2. Eligibility criteria 
Included studies assessed the oncological and/or functional outcomes of WG CRYO or HIFU 
utilized as a primary treatment for localized PCa. We included RCTs, cohort studies (both 
retrospective and prospective), and single-arm studies. Excluded studies were salvage 
therapy or non-WG approaches. Publications were considered eligible if ≥50 patients were 
included, and a minimum of 5 yr of mean/median follow-up was observed. We excluded 
articles published in non-English languages. 
 
2.3. Selection of evidence sources 
All identified studies were uploaded into Covidence (Covidence systematic review software; 
Veritas Health Innovation, Melbourne, Australia; www.covidence.org). Three authors (S.K., 
D.S., and Z.M.) carried out dual independent screening. Any conflicts between reviewers 
were resolved through adjudication by a fourth, senior author (T.J.P.). In the case of studies 
reporting the same outcome from the same dataset, only the study with the longest follow-
up was included. Study selection is presented by a flowchart as per the PRISMA guidelines 
(Supplementary Fig. 1). 
 
2.4. Data variables 
Data extracted from each study included study design; IDEAL (idea, development, 
exploration, assessment, and long-term study) stage [16]; baseline patient 
characteristics such as age, preoperative biopsy findings, prostate-specific antigen (PSA), 
and risk stratification; follow-up; oncological outcomes including PSA metrics, biochemical 
recurrence (BCR), biopsy regimen and positivity rate, salvage treatments, recurrence-free 
survival (RFS), metastasis-free survival (MFS), and overall survival (OS); adverse events 
according to either the Clavien-Dindo scale or the Common Terminology Criteria for Adverse 



Events (CTCAE) [17]; and functional outcomes based on patient-reported outcome 
measures (PROMs), leak-/pad-free continence, and erections sufficient for sexual 
intercourse. 
 
2.5. Definition of outcomes and endpoints 
A meta-analysis was used to evaluate oncological outcomes such as BCR-free survival 
(BCRFS), RFS, disease-specific survival (DSS), MFS, and OS. Although the BCR criteria varied 
among the included studies, such as Phoenix (PSA nadir + 2 ng/ml) [18], American Society 
for Therapeutic Radiology and Oncology (ASTRO; three consecutive PSA rises after a nadir 
with the date of failure as the point halfway between the nadir date and the first rise or any 
rise great enough to provoke initiation of therapy) [19], and Stuttgart (PSA nadir + 1.2 
ng/ml) [20], the majority (21/24, 88%) utilized the Phoenix criteria. RFS was defined as 
freedom from cancer on follow-up biopsy, clinical recurrence, or salvage treatment. 
A meta-analysis was used to evaluate functional outcomes, including pad-free rates and 
erectile function. Pad-free rate was defined as no pad used after ablation. Erectile function 
was defined as potency preservation in initially potent patients based on PROMs such as the 
ability to penetrate/have intercourse, erection sufficient for unassisted sexual activity, 
or International Index of Erectile Function (IIEF) ≥17. Other measures such as 
the International Prostate Symptom Score (IPSS), Stamey, and CTCAE criteria were also 
assessed. 
The meta-analysis also evaluated commonly reported complications including urinary tract 
infection (UTI), urinary retention, stricture, and rectourethral fistula(RUF). Additional less 
reported complications including sepsis, urethral sloughing, and perineal pain were 
described. Severe toxicity was defined as per crude rates of grade ≥3 events according to 
CTCAE version 5 or the Clavien-Dindo criteria [17]. 
 
2.6. Study risk of bias assessment 
To assess the risk of bias, RoB-2 and Robins-I tools were implemented for RCTs and the 
remainder of the selected articles, respectively [21], [22]. The high risk of bias is attributed 
to the heterogeneity of the included studies. Supplementary Figure 2summarizes the risk-
of-bias evaluations. 
 
2.7. Statistical analysis 
We performed statistical analyses using R version 4.2.2 (R Foundation for Statistical 
Computing, Vienna, Austria) with the base, meta, and dplyr packages. The median/mean 
and range for continuous baseline variables were computed. After converting the 
proportions of each outcome to logit, we combined them using a random-effect method 
with an inverse variance approach. We utilized a random-effect model regardless of 
heterogeneity, considering the variation in study designs among the included studies. For 
outcomes with at least three studies, a meta-analysis was conducted, while the remaining 
outcomes were discussed as a review. Additionally, we performed subgroup analyses based 
on energy type. We assessed heterogeneity using I2 and tau statistics. Tau statistics were 
computed utilizing the restricted maximum likelihood estimator. I2 > 50% was considered to 
indicate significant heterogeneity. We used covariates including age, follow-up, neoadjuvant 
therapy, baseline PSA, baseline Gleason scores, and D'Amico risk stratification to determine 
the cause of heterogeneity using meta-regression. Variables included in the model were 
iterated to determine the final combination of covariates explaining the greatest amount of 



heterogeneity, as measured by tau, I2, and the test for heterogeneity. The likelihood of 
publication bias was evaluated using a funnel plot, and the significance was determined 
using Egger's test with a p value of 0.05. 
 
2.8. Evidence assessment and incorporation of expert recommendations 
Following the construction of the systematic review/data assessment, an expert panel 
(criteria: ten or more PCa publications, performing ≥50 PCa ablations per year, and 
leadership in the field) was presented the manuscript over two successive rounds. Best 
practice statements (BPSs) and recommendations presented herein were formulated 
through a combination of systematic review/meta-analysis and pooled expert opinion. The 
final manuscript draft/BPSs were again submitted to all coauthors for final approval prior to 
submission. 
 
The overall quality of the evidence that exists for the recommendation and references used 
in this systematic review is graded according to the classification system modified from the 
Oxford Centre for Evidence-Based Medicine Levels of Evidence [23]. The strength of 
recommendations was graded as strong or weak based on the desirable effects of an 
intervention outweighing the undesirable effects [24]. 
 
Evaluation of the included literature and summarized expert guidance is provided in 
the Supplementary material, and Table 1 shows evidence-based recommendations. 
 
3. Evidence synthesis 
 
3.1. General 
Twenty-nine studies met the final inclusion criteria, including 14 for 
CRYO [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] and 15 for 
HIFU [20], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52]. Included 
studies meeting all the criteria were published from 2000 to 2021. The majority (n = 23) 
were retrospective, with six prospective including one RCT [27]. Regarding IDEAL levels, one 
study was categorized as 2a, 20 were classified as 2b, one was classified as 3, and seven 
were categorized as 4. The median sample size was 261 (range: 70–4062) and follow-up was 
72 (60–181.2) mo, with two studies having a median long-term follow-up of 14 yr [26], [52]. 
Only eight studies reported the percentage of individuals lost to follow-up, which varied 
from 1.8% to 44.86% [26], [30], [31], [32], [40], [43], [46], [52]. Table 2 summarizes the 
baseline clinical characteristics of the included studies. 
 
3.2. Patient selection 
All included studies focused on nonmetastatic, localized PCa. In certain cases, other 
selecting parameters were utilized such as clinical T stage, PSA, Gleason score, life 
expectancy, or risk stratification (D’Amico vs National Comprehensive Cancer Network 
[NCCN]). The median age was 69 (65–82) yr, with approximately 13 studies (45%) having 
patients with median age ≥70 yr. The median PSA of the entire cohort was 7.9 (5–26) ng/ml. 
The risk stratification was based on D’Amico risk stratification in 23/29 (80%) of the studies; 
clinical staging in three studies and NCCN guidelines in one study. Biopsy method was 
reported only in five studies (all transrectal ultrasound[TRUS] 
guided) [27], [34], [37], [41], [51]. Preoperative imaging was discussed in eight papers; one 



used multiparametric magnetic resonance imaging (mpMRI) [38], two used mpMRI 
and bone scan [32], [40], two used TRUS only [41], [51], one used mpMRI or computerized 
tomography (CT) [44], and two used combined TRUS, CT, and bone scan [34], [46]. 
Neoadjuvant androgen deprivation therapy (ADT) was used in 17/29 (59%) studies. Ten 
studies addressed simultaneous transurethral resection of the prostate (TURP) with ablation 
to reduce prostate size and eliminate calcifications that could limit treatment efficacy (all 
HIFU); the median percentage of patients undergoing TURP was 73.4% (2.3–100%). 
A Gleason score of ≤6 accounted for 52.45% (21–85%), 7 for 32% (14–56.5%) and ≥8 for 12% 
(2–57%) of the entire cohort. Studies predominantly included low- or intermediate-risk 
patients, although nine studies explicitly highlighted cT3 patients and 18 studies featured 
high-risk patients (3.7–100%) according to either D’Amico (n = 16) or NCCN (n = 1; one had 
neither) classification. The overall distribution of D’Amico risk among the included studies 
was as follows: 33% (8–56%) low, 45% (28–65%) intermediate, and 22% (4–62%) high 
risk. Supplementary Table 3 details the basic characteristics of the included studies. 
 
3.3. Oncological outcomes 
3.3.1. Surveillance protocols 
Only eight studies commented on an imaging plan after ablation. TRUS q3 months was 
employed in two studies [46], [48]. Oishi et al. [34] utilized TRUS after ablation at 3, 6, and 
12 mo and annually thereafter. Guo et al. [32] utilized MRI and bone single photon emission 
CT q6 months in the 1st year and after BCR, while Shoji et al. [51]performed mpMRI at one 
time 14–28 d postoperatively. One study obtained 18F-choline/prostate-specific membrane 
antigen positron emission tomography after ablation when BCR was identified with 
negative prostate biopsy or for those unwilling to undergo biopsy [38], while the remaining 
studies obtained imaging if clinically indicated [27], [40]. Seventeen studies described PSA 
regimens utilized, with the typical protocol being q3–6 month PSA values. In terms of biopsy 
regimen, 16 series described their sampling protocol. Six studies employed mandatory 
biopsies beginning as early as 3–6 mo, five performed biopsies solely for a suspicion of 
recurrence [32], [38], [40], [43], [49], and four used a combination of 
both [26], [34], [39], [52]. Supplementary Table 4 summarizes the surveillance and follow-up 
protocols of the included studies. 
 
3.3.2. Biochemical and histological outcomes 
PSA nadir was documented in 15 studies, ranging from 0.08 to 1.7 ng/ml and spanning 7.9–
22.1 wk. Twenty-four studies assessed BCR, with 21 utilizing the Phoenix criteria [18], one 
HIFU study utilizing the Stuttgart criteria [20], one CRYO and two HIFU studies utilizing both 
the Phoenix and the Stuttgart criteria, and a final CRYO series utilizing a separate definition 
(Benoit et al. [25] considered <0.4 and <1.0 ng/ml). Figure 1 shows the oncological 
outcomes at 5 yr. 
 
The overall BCRFS rates at 5 and 10 yr were 69% (95% confidence interval [CI]: 60–76; 97%) 
and 58% (95% CI: 49–65; 94%), respectively (Fig. 2). The pooled frequency of BCRFS at 5 yr 
in CRYO was 64% (95% CI: 53–74; 97%), while in HIFU at 5 and 10 yr, the frequencies were 
73% (95% CI: 60–83; 98%) and 56% (95% CI: 46–66; 95%), respectively. One study reported 
10-yr BCRFS of CRYO at 63% [26], and four studies [28], [34], [40], [49] used the D'Amico 
criteria to risk stratify BCRFS at 5-yr intervals, with results ranging from 66% to 89% for low, 
40% to 78% for intermediate, and 21% to 80% for high risk. Regarding histological findings, 



the percentage of patients undergoing biopsy ranged from 19% to 94%. The percentage of 
positive biopsy findings ranged from 10% to 59%. Similarly, the percentage of biopsy 
without malignancy varied from 23% to 87%; Supplementary Table 5 summarizes these 
outcomes of the included studies. 
 
3.3.3. Recurrence-free survival 
RFS or progression-free survival (PFS) was reported in nine studies. RFS at 5 yr ranged from 
69% to 83% with CRYO and was 77% (95% CI: 69–83; 88%) with HIFU. Two studies provided 
the RFS outcomes at 10 yr ranging from 71% to 79% [48], [52]. Sung et al. [40] reported 5-yr 
PFS after HIFU at 73.5% for low risk, 46% for intermediate risk, and 29.2% for high risk with 
100% follow-up. Bründl et al. [52] further reported overall 15-yr RFS of 73%, with 82% for 
low-risk, 73% intermediate-risk, and 47% for high-risk disease. 
 
3.3.4. Metastasis-free survival 
MFS was reported in 11 studies; MFS rates at 5 and 10 yr were 93% (95% CI: 88–96; 90%) 
and 84% (95% CI: 63–94; 98%), respectively. MFS at 5 yr was 93% for CRYO (95% CI: 86-97; 
73%) and was also 93% for HIFU (95% CI: 84–97; 94%). A HIFU study reported MFS at 15 yr 
to be 85%, with 91% for low-risk, 85% for intermediate-risk, and 58% for high-risk 
disease [52]. 
 
3.3.5. Disease-specific survival 
Twenty studies reported DSS outcomes; 5- and 10-yr rates were 98% (95% CI: 96–99; 90%) 
and 96% (95% CI: 92–97; 94%), respectively. The 5-yr DSS rate in CRYO was 98% (95% CI: 
96–99; 75%), while in HIFU, the rates at 5 and 10 yr were 98% (95% CI: 94–99; 90%) and 95% 
(95% CI: 91–97; 91%), respectively. Guo et al. [35] reported 10-yr DSS of 98% for CRYO, 
whereas Bründl et al. [52] reported 15-yr DSS on HIFU: 89% overall and 95%, 89%, and 65% 
across low- to high-risk stratifications. Supplementary Figures 4 and 5 depict the oncological 
outcomes of HIFU at 5 and 10 yr, respectively. 
 
3.3.6. Overall survival 
OS was mentioned in 16 series; 5- and 10-yr OS rates were 92% (95% CI: 89–94; 79%) and 
63% (95% CI: 33–86; 99%), respectively. The OS rate at 5 yr in CRYO was 91% (95% CI: 87–
94; 69%), while in HIFU, the rates at 5 and 10 yr were 93% (95% CI: 88–96; 81%) and 64% 
(95% CI: 27–89; 99%), respectively. Guo et al. [35] reported 10-yr CRYO OS of 61%, and 
Rosenhammer et al. [48] found 15-yr OS of 57.0%, with 66.0% for low risk, 56.0% for 
intermediate risk, and 35.0% for high risk. 
 
3.4. Morbidity 
Complications were not consistently described in all series; nonetheless, certain major 
adverse events were often highlighted in those studies that might have an impact on 
the quality of life. Figure 3 shows the complication rates of the included studies, with 
further summary in Supplementary Table 6 and Supplementary Figure 6. 
 
3.4.1. Stricture 
In nine studies (two CRYO and seven HIFU), stricture rates were 11% (95% CI: 6–19; 98%), 
specifically 5% with CRYO and 12% (95% CI: 7–21; 98%) with HIFU. 
3.4.2. Urinary retention 



Eleven studies (five CRYO and six HIFU) identified 10% (95% CI: 6–15; 93%) urinary 
retention, with a rate of 6% (95% CI: 3–13; 93%) in CRYO and 14% (95% CI: 8–23; 93%) with 
HIFU. 
3.4.3. Urinary tract infection 
In nine trials (eight HIFU and one CRYO), UTIs were 8% (95% CI: 5–13; 92%), including 10% 
with CRYO and 7% (95% CI: 4–12; 91%) with HIFU. Four studies (two CRYO and two HIFU) 
reported 3–6% and 18-s23% of severe UTIs [27], [34], [43], [44]. 
3.4.4. Rectourethral fistula 
Sixteen studies (six CRYO and ten HIFU) reported on RUF, with a rate of 0.7% (95% CI: 0.6–
0.9; 0%), including 0.8% (95% CI: 0.5–1.2; 0%) for CRYO and 0.7% (95% CI: 0.5–0.9; 0%) for 
HIFU. Limani et al. [43] reported 0.9% rate of severe RUF with HIFU. 
3.4.5. Others 
Sepsis was mentioned only in the CRYO study by Benoit et al. [25], reporting a 0.80% rate. 
Urethral sloughing ranged from 1% to 16%, including 1–16% for CRYO and 6% for HIFU. In 
nine studies (five CRYO and four HIFU), perineal pain was reported at 0.6–11%; ranges were 
0.6–11% for CRYO and 0.7–7.9% for HIFU. 
3.5. Functional outcomes 
3.5.1. Urinary function/continence 
Eighteen studies assessed urinary outcomes using various measures. Eight studies reported 
pad-related outcomes [31], [32], [34], [36], [37], [39], [41], [43], two used IPSS, and the 
remainder applied various other measures (Stamey criteria, CTCAE version 5, etc.). 
3.5.1.1. Pad-related outcomes 
Overall, pad-free rate was 96% (95% CI: 94–97, 74%), with 97% (95% CI: 95–98; 0%) for 
CRYO and 95% (95% CI: 87–98; 91%) for HIFU. Two CRYO studies reported 97.4% and 98.8% 
of 1-yr pad-free rates [31], [37]. Oishi et al. [34] reported a 2-yr postablation (CRYO) pad-
free rate of 96.0%. Uchida et al. [47] reported pad-free rates after first and repeat HIFU of 
97.7% and 96.6%, respectively. Supplementary Figures 6 and 7 display a subgroup analysis 
of the functional outcomes of CRYO/HIFU. 
3.5.1.2. IPSS 
Mearini et al. [46] observed that the median IPSS score after HIFU was 7 (range: 1–29), a 
30% drop from baseline, but the exact assessment timing was not reported. 
3.5.1.3. Male Urogenital Distress Index 
Royce et al. [49] reported negligible post-HIFU urinary incontinence or lower urinary tract 
symptoms with median values of 32 (28–43) at 6 mo, 33 (29–41) at 12 mo, and 32 (29–46) 
at 24 mo. 
3.5.1.4. CTCAE 
Donnelly et al. [27] found no grade 3 or 4 urinary incontinence in 117 individuals undergoing 
CRYO. Levy and Jones [28] identified insignificant variations in urinary incontinence across 
prostate volumes (3.3% for <50 cc vs 2.1% for >50 cc), with functional recovery within 12 mo 
after CRYO. Shoji et al. [51] found only transitory incontinence in 3.7% of their HIFU cohort 
at 3 mo. Supplementary Table 7summarizes the functional outcomes of the included 
studies. 
3.5.2. Erectile/sexual function 
Sixteen studies addressed erectile/sexual function. Regarding PROMs, ten studies 
subjectively assessed erections with the capacity to penetrate/have intercourse, while 
others used the IIEF-5 score. Figure 4 depicts the functional outcomes of the included 
studies. 



3.5.2.1. Unassisted erectile function 
Preserved erectile function of preoperatively potent patients was 37% overall (95% CI: 26–
48; 91%); it ranged from 23% (95% CI: 9–48; 94%) with CRYO to 46% (95% CI: 38–54; 78%) 
with HIFU. Ward et al. [31] found pretreatment prostate size to have minimal influence on 
potency preservation at 12 mo after CRYO (30.3% for <50 cc and. 32.3% for >50 cc). 
3.5.2.2. Assisted erectile function 
Reporting of pharmacotherapy and other forms of intercourse assistance after ablation was 
variable; only three studies expressly remarked on new usage of phosphodiesterase type-5 
inhibitors after the procedure, with implementation ranging from 12.8% to 
66.7% [41], [43], [44]. Regardless of assistance type, potency was maintained in 24.9–69.1% 
of the included studies, independent of all measures (both subjective and IIEF-5 based) [30]. 
3.6. Meta-regression 
As we found heterogeneity in the pooled prevalence of the outcomes, we conducted a 
meta-regression analysis. Meta-regression was performed for 5-yr BCRFS, 5-yr OS, erectile 
function, and UTIs, as these outcomes were reported in a sufficient number of studies 
compared with the number of covariates. A model created for 5-yr BCRFS using age, 
baseline PSA, neoadjuvant ADT, Gleason score ≤6, Gleason score 7, and Gleason score ≥8 as 
covariates explained the heterogeneity. The tau was reduced to 0.29 from an initial value of 
0.79 and I2 reduced to 72.4% from an initial value of 97.3%, but the test for residual 
heterogeneity was significant (p = 0.03), thereby suggesting that there may still be 
unexplained covariates. The model showed a negative association of the 5-yr BCRFS 
prevalence with neoadjuvant ADT (odds ratio, 0.92; 95% CI: 0.89–0.96) suggesting that ADT 
did not influence/augment survival. The model's covariates were able to explain 100% 
heterogeneity for UTIs, with tau reduced to 0 from an initial value of 0.78, I2 reduced to 0% 
from 91.6%, and the test for residual heterogeneity turned nonsignificant (p = 0.71). The 
covariates could not account for the heterogeneity seen for 5-yr OS and erectile function. 
Egger’s test did not show any publication bias and the p value was nonsignificant 
(p = 0.72). Supplementary Table 2 shows the meta-regression analysis. 
3.7. Summary 
Whole-gland ablation (WGA) in the salvage setting after RT has already been incorporated 
into several international guidelines [12], [53]. Primary ablation is similarly well accepted by 
PCa experts and has widely been implemented for >25 yr. Several guidelines generally 
authorize its use in low- to intermediate-risk PCa after the patient has made an informed 
decision regarding risks/benefits on oncological/functional outcomes; indeed, informed 
decision-making applies to radical treatments as well, as every intervention has its own 
advantages and complications. 
Nonetheless, as image-guided focal therapy has emerged, it is increasingly important to 
define best practice recommendations and establish a foundation for WGA. The focus of 
this systematic review was on HIFU and CRYO, as these energy modalities have the most 
real-world experience to date. The decision between CRYO and HIFU should be based on 
clinician experience and patient preference since comparative studies are scarce [30]. While 
other, newer energy modalities exist, literature supporting their use as WG options is 
limited due to short follow-up and preferential study now aimed at focal techniques. 
Extrapolation from CRYO and HIFU series to other ablative energy sources should not be 
made without proper study. 
In a literature review comparing oncological outcomes among radical approaches, Goy et 
al. [54] compared RP, external beam RT (EBRT), and brachytherapy (BT) for intermediate-



risk PCa at 10 yr. The BCRFS, RFS, DSS, and MFS were 57.1%, 64.6%, 96.6%, and 94%, 
respectively, for RP; 57%, 73%, 96.2%, and 90.6%, respectively, for EBRT; and 80%, 90%, 
95.4%, and 94%, respectively, for BT. As a reference, the well-conducted ProtecT trial 
demonstrated that DSS rates in low-risk PCa for RP and RT were 99% and 99.6%, 
respectively [55]. We acknowledge that our meta-analysis results were based mostly on 
retrospective studies with observed heterogeneity, but at 10 yr the oncological outcomes 
were found to be comparable, given that 22% of the pooled cohort was at a high risk. The 
10-yr OS rate was slightly lower at 63% as compared with 78% for BT, 85.5% for RP, and 
75.5% for EBRT, as this may be attributed to the elderly nature (>50% were >70 yr old) of 
our population. 
Two RCTs compared the therapeutic efficacy of CRYO to EBRT. According to Donnelly et 
al. [27], CRYO had similar 3- (17.1% vs 13.2%), 5- (25% vs 25.1%), and 8-yr (27% vs 31.7%) 
BCR; 5-yr OS (89.7% vs 88.3%, p = 0.78); and 5-yr DSS (96.4% vs 96.1%) to EBRT. Although 
there was some concern about CRYO’s therapeutic efficacy due to methodology 
(noninferiority) and the unconventional radiation dosage used in the trial, the positive 
biopsy rate at 3 yr was significantly less with CRYO (7.7% vs 28.9%, p = 0.0004), proving the 
therapeutic efficacy of CRYO. While contemporary radiation dosages would likely have 
improved EBRT results, ablation has also experienced evolutionary development in 
techniques, real-time imaging support, and better user interface. In contrast, Chin et 
al. [56] found that CRYO had inferior BCRFS to EBRT (17% vs 59%) at 8 yr in treating T2c-T3b 
PCa, but the intermediate- and long-term outcomes of DSS and OS were similar. Thus, level 
1 evidence, although notably likely underpowered, demonstrates CRYO to have comparable 
positive biopsy rate at 3 yr with long-term DSS and OS, particularly in frail patients with 
high-risk disease. The real-world evidence from our meta-analysis also supports its use in 
such cases; nonetheless, patients should be advised about possibly lower BCRFS and the 
requirement of salvage therapies/multimodality approaches. 
The utility of WGA is further bolstered by the negative effect on functional quality of life 
outcomes associated with radical approaches. The urinary incontinence and erectile 
dysfunction rates with RP (robotic/open) at 12 mo have been described as 21.3%/20.2% and 
70.4%/74.7%, respectively [57]. Pad-free and erectile preservation rates at 12 mo were, 
respectively, 29.4% and 14.6% for RP, and 61.5% and 37.6% for EBRT [58]. Conversely, in 
ablation, the pad-free rates overall, at 1 yr, and at 2 yr were 96%, 98%, and 96%, 
respectively; the preserved erectile function rate was 37%. Thus, ablation techniques 
consistently provide better urinary continence than and comparable erectile function to 
radical approaches. 
Even though eight studies evaluated pad-free rates, two studies mentioned a 1-yr pad-free 
rate and one study mentioned a 2-yr pad-free rate. The precise timing of the functional 
outcome measurement was not specified in the other studies. We acknowledge that there 
is sufficient evidence of continuous improvement in functional outcomes following initial 
insult after primary ablative therapy, as is similarly evident in RP or RT, unless the patient 
develops primary urinary incontinence, either due to increasing age or secondary to the 
presence of other comorbidities such as diabetes or neuropathies. After ablation, patients' 
urinary continence returns within a year and otherwise remains stable. In short, 
confounders might influence long-term functional outcomes, limiting their significance. 
In terms of WGA treatment adjuncts, ADT with ablation was historically used in a 
neoadjuvant fashion, intended to exact benefits through prostate downsizing and increasing 
the treatment coverage [56]. In our review, 36.5% (16–100%) of patients had neoadjuvant 



ADT. However, ADT’s role with WGA has been suggested to be limited due to different 
mechanisms of action with this combination [31], [40]. This was confirmed via a meta-
regression analysis to determine the effect of ADT on BCRFS, observing a negative effect 
with a 0.92 odds ratio (95% CI: 0.89–0.96, p = 0.0004). Additionally, ADT was used as an 
adjuvant in several studies for varying durations (longest was 4 mo) reported by Gestaut et 
al. [33], limiting its confounder impact on long-term oncological outcomes. 
Importantly, several large series with long-term (10+ yr) follow-up serve as a basis to 
appropriately recommend WG CRYO and HIFU as feasible alternative therapeutic choices for 
the management of select low- and intermediate-risk localized PCa patients in the primary 
setting. In the case of high-risk disease, WGA is best done within a clinical trial or registry, 
and patients should be advised about the possible uncertainties with recurrence, as is 
typically the case with RP and RT as well. Given historical critiques of WGA for a lack of long-
term follow-up data and standardized protocols, this meta-analysis supports the conclusion 
that ablation offers mild functional changes, particularly regarding the preservation of 
urinary continence in the primary setting, with adequate oncological outcomes despite 
modest availability of RCT-level data. Nonetheless, the pursuit of well-designed RCTs and 
further high-level data should never cease, and this will remain a future goal. Importantly, 
these data should help inform patients and physicians alike to optimize decision-making at 
this critical juncture in a patient’s disease course. 
 
4. Conclusions 
The oncological and technical safety profiles of CRYO and HIFU appear to be comparable 
with those of current radical therapies. Through a comprehensive systematic review and 
meta-analysis, we present real-world data to help guide physicians and patients with 
decision-making when considering ablative therapy for the treatment of clinically localized 
PCa in the primary setting. The mid- to long-term data and the safety profiles of CRYO and 
HIFU are sound to support and be offered as primary treatment for appropriate patients 
with localized PCa. 
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